Повышение конкурентоспособности российских технологии для освоения нефтегазовых месторождений Арктики

Бабурин С.В., доцент кафедры электроэнергетики и электромеханики, Санкт-Петербургский горный университет, Санкт-Петербург, Россия **Большунова О.М.,** доцент кафедры электроэнергетики и электромеханики, Санкт-Петербургский горный университет, Санкт-Петербург, Россия **Зырин В.О.,** доцент кафедры электроэнергетики и электромеханики, Санкт-Петербургский горный университет, Санкт-Петербург, Россия

Аннотация. В статье рассмотрены проблемы освоения арктических месторождений, потенциал отечественных компаний по производству нефтегазового оборудования. Выделен ряд проблемных технологий, а также факторы, сдерживающие масштабное освоение месторождений Арктики, разработаны предложения по стандартизации и унификации оборудования.

Ключевые слова: Арктический шельф, нефтегазовые месторождения, стандартизация, унификация.

Increasing the competitiveness of Russian technologies for the development of oil and gas fields in the Arctic zone

Baburin S.V., ass.professor, electromechanical department,
Saint-Petersburg Mining University, Saint-Petersburg, Russia
Bolshunova O.M., ass. professor, electromechanical department,
Saint-Petersburg Mining University, Saint-Petersburg, Russia
Zyrin V.O., ass. professor, electromechanical department,
Saint-Petersburg Mining University, Saint-Petersburg, Russia

Annotation. The article shows the problems of developing Arctic deposits, the potential of Russian companies for the production of oil and gas equipment. A

number of problem technologies have been identified, as well as factors hampering the large-scale development of Arctic deposits, proposals have been developed for standardization and unification of equipment for that region.

Keywords: Arctic shelf, oil gas deposits, standardization, unification.

Введение

По статистике, доля России в шельфе Мирового океана составляет около 21%, при этом площадь шельфа и континентального склона России составляет 6,2 млн км². На российском шельфе открыто 20 крупных морских нефтегазоносных провинций и бассейнов, из которых 10 – с доказанной нефтегазоносностью¹.

В условиях уникальности месторождений, сложной политической ситуации и санкционной политике требуется создание российского специализированного оборудования для разработки арктических углеводородных месторождений.

Основным недостатком отечественного нефтегазового и горнопромышленного машиностроения является существенная зависимость отрасли от импортных технологий, оборудования и комплектующих. На сегодняшний день, большинство уникального оборудования, применяемого для добычи в сложных условиях, является зарубежным. Так, в геологоразведочной отрасли объем зарубежного оборудования составляет около 75%, рынок комплектующих также представлен иностранными компаниями, до 90% комплектующих для морских платформ импортируется, поскольку технологии производства многих из них в России отсутствуют.

Реализованные проекты по разработке шельфовых месторождений

В России реализован ряд успешных проектов по разработке шельфовых месторождений: «Сахалин-1», «Сахалин-2», «Сахалин-3», «Приразломное», «Новый порт» и др.

.

¹ Еремин Н.А., Григорьева В.А., Сурина В.В. Перспективы нефтегазоносности и разработки месторождений углеводородов Арктического шельфа России // 3-я Науч.-техн. конф. «Актуальные проблемы состояния и развития нефтегазового комплекса России»: тез. докл. М., 1999. С. 54.

Для разработки Приразломного месторождения создана уникальная ледостойкая платформа «Приразломная»². Она рассчитана на эксплуатацию в экстремальных природно-климатических условиях и способна выдержать максимальные нагрузки.

Для транспортировки добываемого газа на месторождении на международный рынок строят заводы по переработке сжиженного природного газа (СПГ). И первым таким заводом в России является «Сахалин-2»³. В настоящее время завершается строительство завода «Ямал-СПГ», состоящего из трех технологических линий производительностью 5,5 млн. т СПГ в год каждая. В декабре 2017 года была запущена первая линия по сжижению газа. Специально для проекта «Ямал-СПГ» разработаны буровые установки «Арктика», которые способны работать в сложных климатических условиях.

К планируемым проектам по добыче газа и производству сжиженного природного газа относятся «Арктик СПГ-2», «Балтийский СПГ», «Владивосток СПГ». Данные проекты планируется запустить в период 2020-2022 г.

Количество таких проектов освоения шельфа достаточно мало, что объяснятся большим количеством сдерживающих факторов.

Технологические факторы, сдерживающие масштабное освоение Арктических месторождений

Природными осложняющими факторами являются низкие температуры, высокая сейсмичность региона, наличие в северных широтах айсбергов и дрейфующих ледовых полей, сильные подводные течения, большие глубины, а также разного рода природные катаклизмы — смерчи, ураганы, подводные землетрясения и цунами.

Другим осложняющим фактором является санкционная политика в нефтегазовой сфере, в список запрещенного на ввоз в Россию оборудования входят:

³ Голубева И.А., Баканев И.А. Завод по производству СПГ проекта «Сахалин-2» // Нефтепереработка и нефтехимия. Научные достижения и передовой опыт. – 2015. – №6. – С.27-37.

² Бородин В.В., Кузнецов В.П. Морская нефтяная платформа «Приразломная» - крупнейший российский инновационный проект // В мире науки. -2014. -№6. -c.98-103.

- нефтегазовые трубопроводы всех видов и размеров;
- насосно-компрессорные трубы, необходимые при бурении скважин;
- различные насосы для жидкостей;
- буровые установки;
- детали для горизонтального бурения;
- буровое оборудование и оборудование для заканчивания скважин;
- морское оборудование для работы в условиях Арктики;
- оборудование для каротажа;
- скважинные насосы;
- бурильные и обсадные трубы;
- программное обеспечение для гидравлического разрыва пласта;
- насосы высокого давления;
- оборудование для сейсморазведки;
- дистанционно управляемые подводные аппараты;
- компрессоры;
- инструменты для развальцовки;
- распределительные краны;
- райзеры.

Список постоянно пополняется.

К слабым сторонам уровня развития отечественных технологий и оборудования относятся:

- критический моральный и физический износ оборудования и технологий;
 - дефицит инвестиций в инновации;
- низкая рентабельность производства в совокупности с низкой инвестиционной привлекательностью отечественных предприятий нефтегазового машиностроения;

- низкая конкурентоспособность практически всего производимого в
 России нефтегазового и горнопромышленного оборудования на международном технологическом рынке;
- несоответствие российского оборудования мировым стандартам (например, причиной низкой конкурентоспособности российских поршневых насосов и насосов большой мощности является их несоответствие мировым стандартам API).

Мероприятия по повышению конкурентоспособности отечественного нефтегазового оборудования

Одной из важнейших задач, связанных с развитием нефтегазового и горнопромышленного машиностроения арктического назначения является разработка стандартов и требований, соответствующих мировому уровню и позволяющих обеспечивать российскому машиностроению высокую конкурентоспособность на мировых рынках.

Стандартизация — это обеспечение единообразия и качества продукции введением специальных обязательных для применения нормативных документов.

Унификация является одним из видов стандартизации. Унификация направлена на рациональное сокращение номенклатуры и приведение к единообразию изделий, сходных по назначению и незначительно различающихся по конструктивным параметрам и размерам.

Основные направления унификации:

- использование во вновь создаваемых машинах (одинакового или близкого функционального назначения) освоенных в производстве составных элементов (агрегатов, узлов, деталей);
- разработка составных элементов для применения во вновь создаваемых или модернизируемых изделиях;
 - разработка конструктивно-унифицированных рядов изделий;
- ограничение целесообразным минимумом номенклатуры разрешаемых к применению изделий и материалов.

Типизация подразумевает необходимость классификации технологических процессов, которая обычно базируется на конструктивных и технологических признаках обрабатываемых деталей.

Унифицированные системы и оборудование должны быть едиными для всех предприятий, занимающихся разработкой месторождений полезных ископаемых Арктического региона.

Мероприятия по унификации и типизации оборудования могут быть следующими:

1. Определение типа добывающего оборудования или систем.

Унификация производится по отдельным типам и системам оборудования – буровые установки для морских месторождений, буровые платформы, эксплуатационные платформы и т.д.

- 2. Определение полного компонентного состава оборудования или системы и взаимодействие компонентов между собой.
- 3. Определение оптимального компонентного состава (учитывая требования к минимизации) и параметров компонентов, обеспечивающих наибольшую эффективность добычи или переработку сырья
- 4. Если рассматриваемый тип оборудования является частью более крупной системы или комплекса, то должно быть предусмотрена система взаимосвязи с другими элементами данного комплекса.
 - 5. Выявленные оптимальные узлы и детали должны быть типизированы.

Заключение

Проекты по развитию месторождений арктического шельфа являются стратегическими, требующими разработки технологий, учитывающих специфику географической области.

Основными слабыми сторонами отечественных технологий являются критический моральный и физический износ оборудования и технологий, низкая конкурентоспособность производимого в России на международном технологическом рынке и несоответствие российского оборудования мировым стандартам.

Одним из способов повышения конкурентоспособности оборудования является разработка стандартов для оборудования, учитывающих специфику арктических месторождений.

Библиографический список

- 1. Бородин В.В., Кузнецов В.П. Морская нефтяная платформа «Приразломная» крупнейший российский инновационный проект//В мире науки. 2014. №6. с.98-103.
- 2. Голубева И.А., Баканев И.А. Завод по производству СПГ проекта «Сахалин-2» // Нефтепереработка и нефтехимия. Научные достижения и передовой опыт. 2015. №6. С.27-37.
- 3. Еремин Н.А., Григорьева В.А., Сурина В.В. Перспективы нефтегазоносности и разработки месторождений углеводородов Арктического шельфа России // 3-я Науч.-техн. конф. «Актуальные проблемы состояния и развития нефтегазового комплекса России»: тез. докл. М., 1999. С. 54.

References

- 1. Borodin VV, Kuznetsov V.P. The offshore oil platform Prirazlomnaya is the largest Russian innovation project // In the world of science. − 2014. − №6. − p.98-103.
- 2. Golubeva I.A., Bakanev I.A. LNG plant for the Sakhalin-2 project // Oil refining and petrochemistry. Scientific achievements and best practices. −2015. − №6. − P.27-37.
- 3. Eremin NA, Grigorieva VA, Surina V.V. Prospects of oil and gas potential and development of hydrocarbon fields of the Arctic shelf of Russia // 3 Conf. «Actual problems of the state and development of Russia's oil and gas complex»: doc. M., 1999. P. 54.